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This is intended to be a short tutorial on fast multipole methods (FMM). These were mainly
written to ease my understanding of the subject. We discuss the main technical concepts like
singular potentials, factorization, and translation. Important topics like error analysis and the
computational cost analysis are left out. The single level FMM is discussed in detail since the fast
Gauss transform is based on the single level FMM. A brief discussion of multiple level FMM is
given at the end. This primer is mainly based on the course offered by Dr. Ramani Duraiswami
and Dr. Nail Gumerov at the University of Maryland, College Park.
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1. INTRODUCTION

The fast multipole method has been called one of the ten most significant algorithms
[Dongarra and Sullivan 2000][Board and Schulten 2000] in scientific computation
discovered in the 20th century, and won its inventors, Vladimir Rokhlin and Leslie
Greengard, the 2001 Steele prize, in addition to getting Greengard the ACM 1987
best dissertation award [Greengard 1988].

The algorithm allows the product of particular structured dense matrices with
a vector to be evaluated approximately in O(N) or O(N log N) operations, when
direct multiplication requires O(N2) operations. Coupled with advances in itera-
tive methods for the solution of linear systems, they provide O(N) or O(NlogN)
time and memory complexity solutions of problems that hitherto required O(N3)
or O(N2) time complexity and O(N2) memory complexity. For extremely large
problems, the gain in efficiency and memory can be very significant, and enables
the use of more sophisticated modeling approaches that, while known to be better,
may have been discarded as computationally infeasible in the past.

Originally this method was developed for the fast summation of the potential
fields generated by a large number of sources (charges), such as those arising in
gravitational or electrostatic potential problems, that are described by the Laplace
equation in two or three dimensions [Greengard and Rokhlin 1987]. This lead to the
name for the algorithm. Since then FMM has also found application in many other
problems, e.g. in non-parametric statistics, finance, chemistry, machine learning,
computer vision etc.

We are interested in computing the following sum

vj =
N∑

i=1

qiΦ(yj , xi), j = 1, . . . , M, (1)

where

—{xi ∈ Rd}i=1,...,N are called the source points,

—{yj ∈ Rd}j=1,...,M are called the target points,

—{qi ∈ R}i=1,...,N are the source weights,

—and Φ is the potential function.

Φ(yj , xi) is the contribution of source at xi towards the target point yj . The
computational complexity to directly evaluate Eq. 1 is O(MN).

The fast multipole methods look for computation of the same problem with com-
plexity O(M +N) and error < ε. The FMM represents a fundamental change in the
way of designing numerical algorithms, in that it solves the problem approximately,
and trades complexity for exactness. However, practically this distinction is usually
not important, as in general, we need the solution to any scientific problem only
to a specified accuracy, and in any case the accuracy specified to the FMM can be
arbitrary. In the case when the error of the FMM does not exceed the machine
precision error there is no difference between the exact and approximate solution.

Compared to the FFT, the FMM does not require that the data be uniformly
sampled, and in general it does not rely on discretization structure to achieve the
speedup.
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Fig. 1. Local R-expansion B<
r∗ (x∗) = {y ∈ R2 : ‖y − x∗‖ < r∗} in case of (a) r∗ < ‖xi − x∗‖, (b)

r∗ = ‖xi − x∗‖, and (c) r∗ > ‖xi − x∗‖.

2. POTENTIALS AND FACTORIZATION

We refer to Φ(y, xi) as the field or potential of the ith unit source. We mainly
focus on scalar fields. Φ(y, xi) can either be singular or regular. For example the
gravitational field is singular at the source point while the gaussian field is regular
everywhere.

Gravity (singular at x = xi).

Φ(y, xi) =
1

‖y − xi‖ (2)

Gaussian (regular everywhere).

Φ(y, xi) = e−‖y−xi‖2/h2
(3)

2.1 Regular (Local) Expansion: R-expansion

For any x∗ ∈ Rd we call the expansion

Φ(y, xi) =
∞∑

m=0

am(xi, x∗)Rm(y − x∗) (4)

regular (local) inside a sphere B<
r∗(x∗) = {y ∈ Rd : ‖y − x∗‖ < r∗}, if the series

converges for all y ∈ B<
r∗(x∗). am(xi, x∗) are the expansion coefficients and Rm(y−

x∗) are the regular basis functions. x∗ is also referred to as the expansion center.
Eq. 4 is referred as the R-expansion of the potential Φ(y, xi). For a regular po-

tential the region of convergence B<
r∗(x∗) can be quite arbitrary (the R-expansion

is valid for all the three cases shown in Fig. 1). However for a singular potential
B<

r∗(x∗) cannot include the singular point (only Fig. 1(a) and (b) are valid, where
the singular point xi is outside B<

r∗(x∗)).

Example 1: R-expansion of a regular function
Consider the one-dimensional Gaussian function which is regular everywhere,

Φ(y, xi) = e−(y−xi)
2/h2

. (5)
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For any x∗ ∈ R and ‖y − x∗‖ < r∗ < ∞, making use of the Taylor’s series, the
R-expansion can be written as follows.

Φ(y, xi) = e−[(y−x∗)−(xi−x∗)]2/h2

= e−(y−x∗)2/h2
e−(xi−x∗)2/h2

e2(y−x∗)(xi−x∗)/h2

= e−(y−x∗)2/h2
e−(xi−x∗)2/h2

∞∑
m=0

2m

m!

(
y − x∗

h

)m (
xi − x∗

h

)m

=
∞∑

m=0

[
2m

m!
e−(xi−x∗)2/h2

(
xi − x∗

h

)m]
e−(y−x∗)2/h2

(
y − x∗

h

)m

=
∞∑

m=0

am(xi, x∗)Rm(y − x∗), (6)

where

am(xi, x∗) =
2m

m!
e−(xi−x∗)2/h2

(
xi − x∗

h

)m

. (7)

Rm(y − x∗) = e−(y−x∗)2/h2
(

y − x∗
h

)m

. (8)

Example 2: R-expansion of a singular function.
Consider the one-dimensional gravitational field which is singular at y = xi,

Φ(y, xi) =
1

y − xi
. (9)

For any x∗ ∈ R and ‖y − x∗‖ < r∗ ≤ ‖xi − x∗‖ (to make sure we do not include
the singular point xi), [We make use of the Geometric progression.]

Φ(y, xi) =
1

(y − x∗)− (xi − x∗)
= − 1

(xi − x∗)[1− y−x∗
xi−x∗

]

= − 1
(xi − x∗)

[
1− y − x∗

xi − x∗

]−1

= − 1
(xi − x∗)

∞∑
m=0

(y − x∗)m

(xi − x∗)m
, since‖y − x∗‖ < ‖xi − x∗‖

=
∞∑

m=0

[ −1
(xi − x∗)m+1

]
(y − x∗)m

=
∞∑

m=0

am(xi, x∗)Rm(y − x∗), (10)

where

am(xi, x∗) =
−1

(xi − x∗)m+1
. (11)

Rm(y − x∗) = (y − x∗)m. (12)
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Fig. 2. Far field S-expansion B>
R∗ (x∗) = {y ∈ R2 : ‖y− x∗‖ > R∗} in case of (a) R∗ < ‖xi − x∗‖,

(b) R∗ = ‖xi − x∗‖, and (c) R∗ > ‖xi − x∗‖.

2.2 Far Field Expansion: S-expansion

For any x∗ ∈ Rd we call the expansion

Φ(y, xi) =
∞∑

m=0

bm(xi, x∗)Sm(y − x∗) (13)

far field expansion outside a sphere B>
R∗(x∗) = {y ∈ Rd : ‖y − x∗‖ > R∗}, if the

series converges for all y ∈ B>
R∗(x∗). bm(xi, x∗) are the expansion coefficients and

Sm(y − x∗) are the basis function (which can be singular at y = x∗). Eq. 13 is re-
ferred as the S-expansion of the potential Φ(y, xi). For a regular potential B>

R∗(x∗)
can be quite arbitrary (the S-expansion is valid for all the three cases shown in
Fig. 2) but for a singular potential B>

R∗(x∗) cannot include the singular point (only
Fig. 2(b) and (c) are valid, where the singular point xi is not in B>

R∗(x∗)).

Example 1: S-expansion of a regular function
For a regular potential the R-expansion can serve as the S-expansion since the
potential does not have any singular points. However it is desirable to use rapidly
converging series. Consider the one-dimensional Gaussian function which is regular
everywhere.

Φ(y, xi) = e−(y−xi)
2/h2

. (14)

For any x∗ ∈ R and ‖y − x∗‖ > R∗ < ∞,

Φ(y, xi) =
∞∑

m=0

bm(xi, x∗)Sm(y − x∗), (15)

where

bm(xi, x∗) =
2m

m!
e−(xi−x∗)2/h2

(xi − x∗)m. (16)

Sm(y − x∗) = e−(y−x∗)2/h2
(y − x∗)m. (17)
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Example 2: S-expansion of a singular function.
Consider the one-dimensional gravitational field which is singular at y = xi,

Φ(y, xi) =
1

y − xi
=

∞∑
m=0

bm(xi, x∗)Sm(y − x∗), . (18)

For any x∗ ∈ R and ‖y − x∗‖ > R∗ ≥ ‖xi − x∗‖ (to make sure we do not include
the singular point xi),

Φ(y, xi) =
1

(y − x∗)− (xi − x∗)
=

1
(y − x∗)[1− xi−x∗

y−x∗
]

=
1

(y − x∗)

[
1− xi − x∗

y − x∗

]−1

=
1

(y − x∗)

∞∑
m=0

(xi − x∗)m

(y − x∗)m

=
∞∑

m=0

[
1

(y − x∗)m+1

]
(xi − x∗)m

=
∞∑

m=0

bm(xi, x∗)Sm(y − x∗), (19)

where,

bm(xi, x∗) = (xi − x∗)m, Sm(y − x∗) =
1

(y − x∗)m+1
. (20)

2.3 Why R- and S-expansions?

If the potential has a singular point xi, then we use R-expansion for all ‖y− x∗‖ <
‖xi − x∗‖, and S-expansion for all ‖y − x∗‖ > ‖xi − x∗‖. Note that the singular
point xi is at the boundary of the regions for R- and S-expansions. Also in case of
regular potentials depending upon how far y is from x∗ either the S-expansion or
the R-expansion will converge much more rapidly than the other.

3. MIDDLEMAN METHOD

3.1 For regular potentials

Consider a potential which is regular everywhere. Then we can use the R-expansion
about a point x∗ for factorizing the potential. The field at yj can be evaluated as
follows.

vj =
N∑

i=1

qiΦ(yj , xi)

=
N∑

i=1

qi

[ ∞∑
m=0

am(xi, x∗)Rm(yj − x∗)

]
[R-expansion]

=
N∑

i=1

qi

[
p−1∑
m=0

am(xi, x∗)Rm(yj − x∗) + error(p, xi, yj , x∗)

]
(21)

The truncation number p is chosen based on the desired error. One of the trickiest
part in designing a good FMM algorithm lies in getting a pretty tight bound for
FMM tutorial April 8, 2006
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Fig. 3. (a) Direct computation (b) Middleman method (c) middleman with target clusters (d)
middleman with source clusters (e) Single level FMM.

error(p, xi, yj , x∗). Ignoring the error term we have,

v̂j =
N∑

i=1

qi

[
p−1∑
m=0

am(xi, x∗)Rm(yj − x∗)

]

=
p−1∑
m=0

[
N∑

i=1

qiam(xi, x∗)

]
Rm(yj − x∗)

=
p−1∑
m=0

AmRm(yj − x∗) (22)

where Am =
∑N

i=1 qiam(xi, x∗), which depends only on the source and can be com-
puted in one pass for different m. The computational complexity for computing
{Am}p−1

m=0 if O(pN) and for computing {v̂j}M
j=1 is O(pM). Hence the total compu-

tational cost is O(pN + pM). As long as p ¿ min(M,N) we have a reduction in
the computational complexity.

This approach is called the middleman method since we are computing the set of
coefficients {Am}p−1

m=0 at a single expansion center x∗ (see Fig. 3(b)). The reader
should realize that this approach will work only for regular potentials. Also it can
be seen that the middleman method need not use only one expansion center. We
can use multiple expansion centers and them consolidate the contribution of all the
expansion centers (see Fig. 3(c)).

3.2 For singular potentials

For singular potentials we can use the middleman approach if the source and the
target points are well separated. [See Fig. 4(a) and (b)]. In (a) and (b) we will use
the R-expansion at the center of each target clusters and in (d) and (e) we will use
the S-expansion at the center of each source clusters.

If the sources and targets are not well separated we do a space partitioning. For
example let us say we partition with respect to the target points. For each target
cluster we use the R-expansion for all sources outside a neighborhood of the cluster.
There will be some sources which happen to lie within the neighborhood of these

FMM tutorial April 8, 2006
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Fig. 4. For singular potentials we can use the middleman approach if the source and the target
points are well separated. In (a) and (b) we will use the R-expansion at the center of each target
clusters and in (d) and (e) we will use the S-expansion at the center of each source clusters. The
red filled circles are the source points and the back circles are the target points.

clusters, where the potential happens to be singular at each of these source points.
If the number of such sources is few we can directly sum the contribution of these
sources. However if they are large in number, this leads to the idea of a single level
FMM to be discussed in the next section.

4. TRANSLATIONS (RE-EXPANSIONS)

Let {Fn(y−x∗1)}∞n=0 and {Gm(y−x∗2)}∞m=0 be two sets of basis functions centered
at x∗1 and x∗1 such that Φ(y, xi) can be represented by two uniformly and absolutely
convergent series as,

Φ(y, xi) =
∞∑

n=0

an(xi, x∗1)Fn(y − x∗1), ∀y ∈ Ω1 ⊂ Rd. (23)

Φ(y, xi) =
∞∑

m=0

bm(xi, x∗2)Gm(y − x∗2), ∀y ∈ Ω2 ⊂ Ω1. (24)

(F |G)(t) is called a translation operator which relates the two sets of coefficients
as,

{bm(xi, x∗2)} = (F |G)(t){an(xi, x∗1)}, t = x∗2 − x∗1. (25)

FMM tutorial April 8, 2006
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4.1 R|R re-expansion (Local to Local)

Refer to Fig. 5(a). Consider the R expansion of a potential Φ(y, xi) about the
expansion center x∗ ∈ Rd

Φ(y, xi) =
∞∑

m=0

am(xi, x∗)Rm(y − x∗), ∀y ∈ B<
r (x∗) = {y ∈ Rd : ‖y − x∗‖ < r}

We are interested in writing the same function over a shifted basis Rn(y− (x∗+ t))
about the expansion center x∗ + t ∈ B<

r (x∗)

Φ(y, xi) =
∞∑

n=0

ãn(xi, x∗ + t)Rn(y − (x∗ + t)), ∀y ∈ B<
r1(x∗ + t) ⊂ B<

r (x∗),

where B<
r1(x∗ + t) = {y ∈ B<

r (x∗) : ‖y − (x∗ + t)‖ < r1 = r − ‖t‖}. The matrix
operator (R|R)(t) relates the coefficients am(xi, x∗) and ãn(xi, x∗ + t) as,

ãn(xi, x∗ + t) =
∞∑

m=0

(R|R)nm(t)am(xi, x∗). (26)

4.2 S|S re-expansion (Multipole to Multipole)

Refer to Fig. 5(b). Consider the S expansion of a potential Φ(y, xi) about the
expansion center x∗ ∈ Rd (‖xi − x∗‖ ≤ r)

Φ(y, xi) =
∞∑

m=0

bm(xi, x∗)Sm(y − x∗), ∀y ∈ B>
r (x∗) = {y ∈ Rd : ‖y − x∗‖ > r}

We are interested in writing the same function over a shifted basis Sn(y− (x∗+ t))
about the expansion center x∗ + t ∈ B<

r (x∗)

Φ(y, xi) =
∞∑

n=0

b̃n(xi, x∗ + t)Sn(y − (x∗ + t)), ∀y ∈ B>
r1(x∗ + t) ⊂ B>

r (x∗),

where B>
r1(x∗ + t) = {y ∈ B>

r (x∗) : ‖y − (x∗ + t)‖ > r1 = r + ‖t‖}. The matrix
operator (S|S)(t) relates the coefficients bm(xi, x∗) and b̃n(xi, x∗ + t) as,

b̃n(xi, x∗ + t) =
∞∑

m=0

(S|S)nm(t)bm(xi, x∗). (27)

4.3 S|R re-expansion (Multipole to Local)

Refer to Fig. 5(c). Consider the S expansion of a potential Φ(y, xi) about the
expansion center x∗ ∈ Rd (‖xi − x∗‖ ≤ r)

Φ(y, xi) =
∞∑

m=0

bm(xi, x∗)Sm(y − x∗), ∀y ∈ B>
r (x∗) = {y ∈ Rd : ‖y − x∗‖ > r}

We are interested in writing the same function over a shifted regular basis Rn(y −
(x∗ + t)) about the expansion center x∗ + t ∈ B>

r (x∗)

Φ(y, xi) =
∞∑

n=0

ãn(xi, x∗ + t)Rn(y − (x∗ + t)), ∀y ∈ B<
r1(x∗ + t) ⊂ B>

r (x∗),

FMM tutorial April 8, 2006
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Fig. 5. Schematic illustrating (a) R|R re-expansion, (b) S|S re-expansion, and (c) S|R re-expansion

where B<
r1(x∗ + t) = {y ∈ B>

r (x∗) : ‖y − (x∗ + t)‖ < r1 = ‖t‖ − r}. The matrix
operator (S|R)(t) relates the coefficients bm(xi, x∗) and ãn(xi, x∗ + t) as,

ãn(xi, x∗ + t) =
∞∑

m=0

(S|R)nm(t)bm(xi, x∗). (28)

4.4 R|S re-expansion (Local to Multipole)

Theoretically it is possible to have R|S re-expansion also. But in practice since the
domain of S expansion is larger than the domain of R expansion, this is either not
useful (due to large error bounds) or can be avoided in algorithms. Most FMM
algorithms do not use R|S re-expansion.
FMM tutorial April 8, 2006
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Fig. 6. The three spatial domains.

5. SINGLE LEVEL FMM

5.1 What is the problem with middleman ?

For a regular potential even though the expansion is valid everywhere, the trunca-
tion number can be huge for large domains to provide the desired accuracy. For
singular potentials the middleman approach can be used only when either the source
or targets are naturally grouped.

5.2 Space subdivison

Given these series representations and translation operators, the single level FMM
proceeds as follows. First the space is partitioned into boxes. Each box will contain
a certain number of sources and targets. For any box n we define the following three
spatial domains [See Fig. 6].

I1(n) = {n}
I2(n) = {Neighbors(n)}

⋃
{n}

I3(n) = {All boxes} − {I2(n)} (29)

Let the target point y ∈ n. We define the following three potentials,

Φn
1 (y) =

∑

xi∈I1(n)

qiΦ(y, xi)

Φn
2 (y) =

∑

xi∈I2(n)

qiΦ(y, xi)

Φn
3 (y) =

∑

xi∈I3(n)

qiΦ(y, xi) (30)

Since E3(n)c = E2(n) the total potential can be written as,

Φ(y) =
N∑

i=1

qiΦ(y, xi) =
∑

xi∈{I2(n)
S

I3(n)}
qiΦ(y, xi) = Φn

2 (y) + Φn
3 (y). (31)
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5.3 R expansion

The potential Φn
3 (y) has to be computed using the local R expansion of Φ(y, xi)

about the box center xn
c . Exchanging the order of summation and consolidating

the source terms we have,

Φn
3 (y) =

∑

xi∈I3(n)

qiΦ(y, xi)

=
∑

xi∈I3(n)

qi

[ ∞∑
m=0

am(xi, x
n
c )Rm(y − xn

c )

]

=
∞∑

m=0


 ∑

xi∈I3(n)

qiam(xi, x
n
c )


 Rm(y − xn

c )

=
∞∑

m=0

An
mRm(y − xn

c ) (32)

where An
m =

∑
xi∈I3(n) qiam(xi, x

n
c ).

5.4 S expansion

If y is close to xn
c then the local R-expansion series will converge quickly. However

if y is faraway then the series may converge very slowly or may nor converge at all.
We need a larger radius of convergence so that the number of boxes are small. Also
since we will be truncating the above series, if the series converges slowly larger
radius will imply a very large truncation number. For this reason we use the S-
expansions, and translate it to an R-expansion via the S|R translation operator. The
S expansions are computed about the box centers for all the boxes. Exchanging the
order of summation and consolidating the source terms we have Φl

1(y) the potential
at y ∈ I3(l) due to all sources xi ∈ I1(l)

Φl
1(y) =

∑

xi∈I1(l)

qiΦ(y, xi)

=
∑

xi∈I1(l)

qi

[ ∞∑
m=0

bm(xi, x
l
c)Sm(y − xl

c)

]

=
∞∑

m=0


 ∑

xi∈I1(l)

qibm(xi, x
l
c)


 Sm(y − xl

c)

=
∞∑

m=0

Bl
mSm(y − xl

c) (33)

where Bl
m =

∑
xi∈I1(l)

qibm(xi, x
l
c).

FMM tutorial April 8, 2006



Not all those that wander are lost -J.R.R. Tolkien. · 13

5.5 S|R Translation

Now we want to write the potential Φl
1(y) (expanded using an S expansion around

xl
c) as an R expansion around xn

c .

Φl
1(y) =

∑

xi∈I1(l)

qi

[ ∞∑
m=0

bm(xi, x
l
c)Sm(y − xl

c)

]

=
∑

xi∈I1(n)

qi

[ ∞∑

k=0

ãk

(
xi, x

l
c + (xn

c − xl
c)

)
Rk

(
y − (

xl
c + (xn

c − xl
c)

))
]

=
∞∑

k=0


 ∑

xi∈I1(l)

qiãk

(
xi, x

l
c + (xn

c − xl
c)

)

 Rk(y − xn

c )

=
∞∑

k=0


 ∑

xi∈I1(l)

qi

{ ∞∑
m=0

(S|R)km(xn
c − xl

c)bm(xi, x
l
c)

}
 Rk(y − xn

c )

=
∞∑

k=0



∞∑

m=0

(S|R)km(xn
c − xl

c)





∑

xi∈I1(l)

qibm(xi, x
l
c)






 Rk(y − xn

c )

=
∞∑

k=0

[ ∞∑
m=0

(S|R)km(xn
c − xl

c)B
l
m

]
Rk(y − xn

c )

=
∞∑

k=0

Ãnl
k Rk(y − xn

c ) (34)

where Ãnl
k =

∑∞
m=0(S|R)km(xn

c − xl
c)B

l
m. The R expansions about the box center

xn
c ,

Φn
3 (y) =

∞∑
m=0

An
mRm(y − xn

c ) (35)

where An
m =

∑
xi∈I3(n) qiam(xi, x

n
c ) =

∑
l∈I3(n) Ãnl

m . So we have R expansions
about the box centers, and very few points for which valid expansions could not be
constructed. These are evaluated directly and added to the R expansions evaluated
at the evaluation points. The speedup is achieved by appropriately truncating each
series.

6. MULTI LEVEL FMM

We give a brief description of the multi level FMM without going into the details.
Given these series representations and translation operators, the multilevel FMM
proceeds as follows. First the space is partitioned into boxes at various levels,
and outer S expansions computed about box centers at the finest level, for points
within the box. These expansions are consolidated, and they are translated S|S
using translations in an upward pass up the hierarchy. The coefficients of these box-
centered expansions at each level are stored. In the downward pass, the consolidated
S expansions are expanded as local R expansions about boxes in the evaluation
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Algorithm 1: Single Level Fast Multipole Method
Input :

xi ∈ Rd i = 1, . . . , N /* N sources in d dimensions. */
qi ∈ R+ i = 1, . . . , N /* source weights. */

yj ∈ Rd j = 1, . . . , M /* M targets in d dimensions. */
Φ(y, xi) /* potential at y due to source xi. */
ε > 0 /* Desired error. */

Output: Computes an approximation Φ̂(yj) to Φ(yj) =
∑N

i=1 qiΦ(yj , xi) such
that the |Φ̂(yj)− Φ(yj)| ≤ ε.

Step 0 Partition the space into boxes.;

Step 1 Decide the truncation numbers p1 and p2 such that the error is ≤ ε;

Step 2 S- and R-expansion of the potential function about each box center.
∀xi ∈ I1(l) ∀y ∈ I3(l) Φ(y, xi) =

∑p1−1
r=0 br(xi, x

l
c)Sr(y − xl

c)
∀xi ∈ I3(l) ∀y ∈ I1(l) Φ(y, xi) =

∑p2−1
q=0 aq(xi, x

l
c)Rq(y − xl

c);

Step 3 Consolidate the S-expansion coefficients for each box.
Bl

r =
∑

xi∈I1(l)
qibr(xi, x

l
c) for r = 0, . . . , p1 − 1;

Step 4 S|R translate the expansion coefficients.
Ãnl

q =
∑p1−1

r=0 (S|R)qr(xn
c − xl

c)Bl
r for q = 0, . . . , p2 − 1

An
q =

∑
l∈I3(n) Ãnl

q for q = 0, . . . , p2 − 1;

Step 5 Final summation.
Φ(y ∈ I1(n)) =

∑
xi∈I2(n) qiΦ(y, xi) +

∑p2−1
q=0 An

q Rq(y − xn
c );

hierarchy, using the S|R translation, for boxes for which the expansion is valid (it
is in the domain of validity of the particular S expansion). At finer levels, the R
expansions at the higher levels are R|R translated to the new box centers and to
these are added the coefficients of the S|R translations from boxes at finer levels of
the source hierarchy, which were excluded at the previous level(s). At the finest level
of the evaluation hierarchy we have R expansions about the box centers, and very
few points for which valid expansions could not be constructed. These are evaluated
directly and added to the R expansions evaluated at the evaluation points.
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